APASL 2025 BETJING

HBsAg Declines and Immune Responses Following a Single Dose of VRON-0200: Interim Results from a Phase1B Study for HBV Functional Cure in Chronic HBV-Infected Patients

Wong, GL¹; Currie, SL²; Luber, A²; Lim, TH³; Bonhomme, ME⁴; Gane, EJ⁵

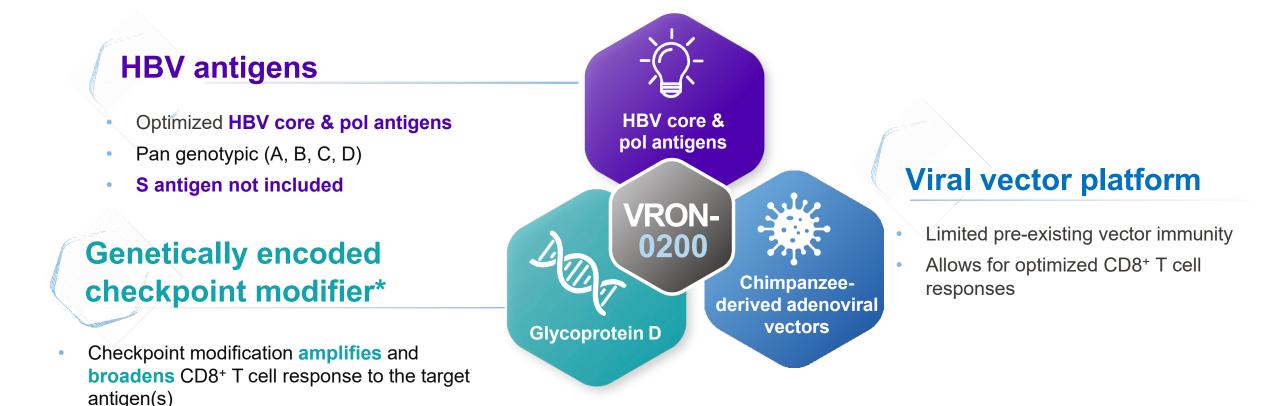
- 1. Medical Data Analytics Centre, Department of Medicine and Therapeutics, and Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR China;
- 2. Virion Therapeutics, Philadelphia, PA, USA;
- 3. Middlemore Hospital, Auckland, New Zealand;
- 4. Laboratory Services, Vaccine Sciences Department, PPD, Part of Thermo Fisher Scientific, Richmond, VA, USA;
- 5. New Zealand Liver Transplant Unit, Auckland City Hospital, University of Auckland, New Zealand

APASL #: OP0242

APASL 2025 BETJING

Disclosure of Conflict of Interest

- Grace Wong has served as an advisory committee member for AstraZeneca, Gilead Sciences, GlaxoSmithKline, Janssen, & Virion Therapeutics, and as a speaker for Abbott, Abbvie, Ascletis, Bristol-Myers Squibb, Echosens, Gilead Sciences, Janssen, and Roche. She has also received a research grant from Gilead Sciences
- Ed Gane has served as an advisor and/or speaker for AbbVie, Abbott Diagnostics, Aligos, Arbutus, Arrowhead, Assembly, Dicerna, Gilead Sciences, Glaxo Smith Kline, Intellia, Janssen, Merck, Novartis, Precision Biosciences, Genentech-Roche, Tune, Vaccitech, Vir Bio & Virion Therapeutics
- Tien-Huey Lim has nothing to disclose
- Marie Bonhomme is an employee of PPD®, part of Thermo Fisher Scientific, who is the laboratory contracted to perform work on the VRON-0200 study
- Sue Currie and Andrew Luber work at Virion Therapeutics, LLC and own shares in the company

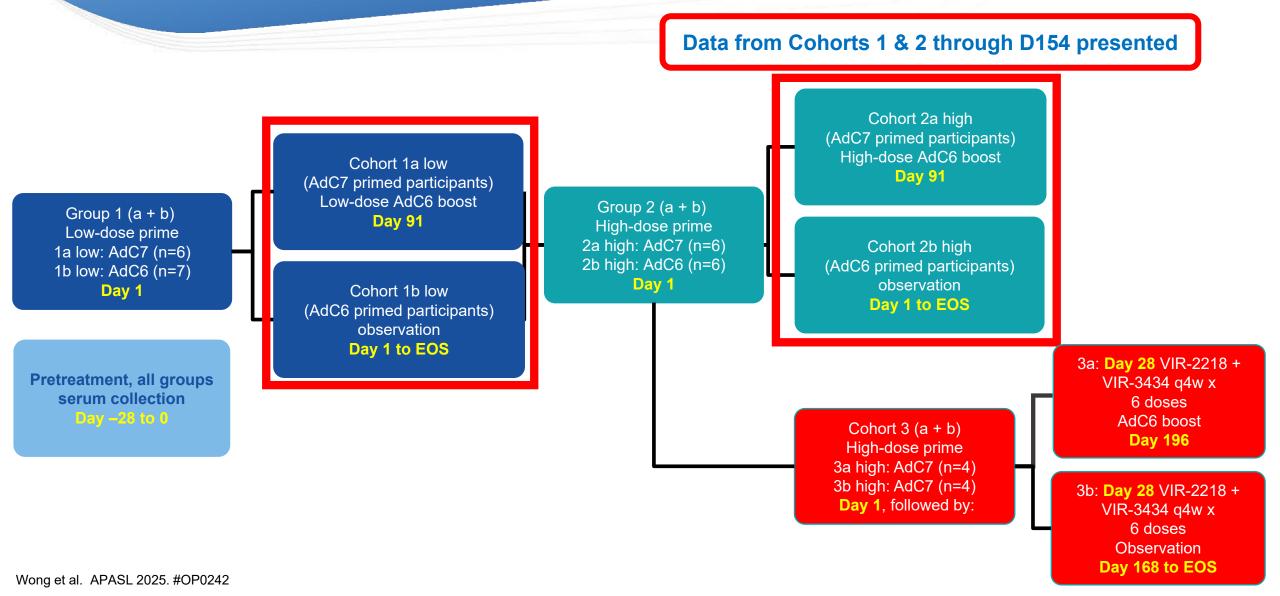


- Despite preventative vaccines, chronic HBV infection remains a high unmet medical need [1]
- Immune-based treatments are now considered necessary for HBV Functional Cure [2]
- VRON-0200 is a therapeutic vaccine for functional cure of HBV infection designed to enhance and broaden CD8⁺ T cells to HBV core & pol [3-6]
- In chronically HBV-infected patients, VRON-0200 has demonstrated [7]:
 - A favorable safety and tolerability profile
 - Immunogenicity
 - Anti-HBV activity (HBsAg declines)

1. Bertoletti A, et al. J Hepatol 2016; 64 (1 Suppl):S71-S83. 2. Wong GL, et al. JHEP. 2022; 76: 1249-62. 3. Luber A, et al. ESMO TAT 2021: Abstract 143. 4. Xiang ZQ, et al. ASCO-SITC Clinical Immuno-Oncology Symposium 2020: Abstract 71. 5. Stiles KM, et al. J Virol. 2010; 84: 11640-60. 6. Virion Therapeutics, LLC. Data on File; 2024. 7. Wong GL, et al. AASLD 2024: Abstract #LBA-5029.

Wong et al. APASL 2025. #OP0242

VRON-0200: A Potential First-in-Class, Best-In-Class Immunotherapy for HBV Functional Cure


HBV, hepatitis B virus.

4

To report ongoing safety, immunogenicity data, and HBsAg changes in chronically HBV-infected patients vaccinated with VRON-0200

Study Schema

Key Inclusion Criteria

1. Adults \geq 18 to \leq 55 years

- 2. BMI \geq 18 to \leq 32 kg/m²
- 3. Documented chronic HBV infection

4. HBsAg ≤ 500 IU/mL (Cohort 3 ≤ 1,000 IU/mL)

- 5. On entecavir or tenofovir > 12 months and expected to stay on therapy
- 6. HBV DNA < 40 IU/mL > 12 months
- 7. ALT < 2x ULN
- 8. AST levels < 2x ULN
- 9. No clinical diagnosis of advanced liver fibrosis and/or cirrhosis

Methods: Clinical assessments (Data Cutoff: Feb. 20, 2025)

Safety

• Patients were evaluated for safety, immunological, and virologic measures at multiple time points, and blood samples were collected at every visit

HBsAg

- ELISA for absolute changes (log₁₀ IU/mL; LLOD 0.05 IU/mL)
- Day 91 all prime patients
- Day 154 included prime, and prime and boost, patients

HBsAb (Qualitative)

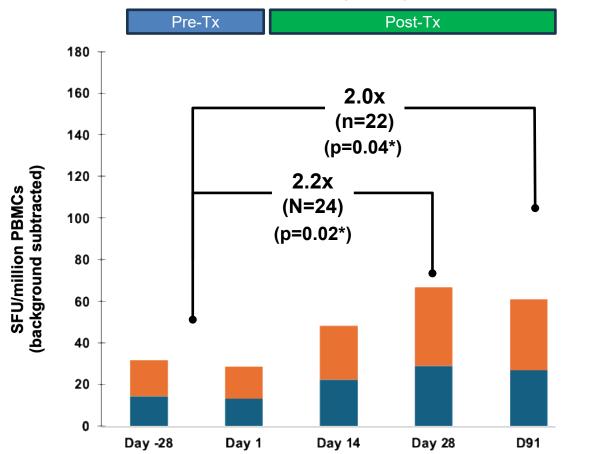
 anti-HBs concentration detected at ≥ 10 mIU/mL is considered positive

Immunologic Assessments

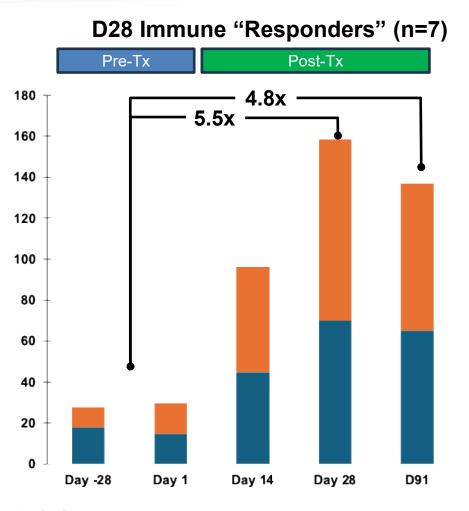
- IFNγ ELISpot to core, pol, and surface peptide pools
- Immunologic "responder" 2 consecutive core + pol ELISpot measurements at Day 28 > average of the 2 pre-treatment timepoints, and above the LLOD
- One-side paired t-test assess sum of core + pol ELISpot measurements from average of the pre-treatment values compared to Day 28, and Day 91, respectively, for each patient

Demographics and Baseline Characteristics

	Cohort 1a (n=6)	Cohort 1b (n=7)	Cohort 2a (n=7)	Cohort 2b (n=7)	Overall (N=27)
Median age, yrs (range)	43 (37-52)	49 (41-54)	47(45-54)	46(41-55)	46 (37-55)
Sex, n (%) Male Female	6 (100%) 0 (0%)	6 (86%) 1 (14%)	4 (57%) 3 (43%)	6 (86%) 1 (14%)	22 (81%) 5 (19%)
Race, n (%) Asian Native Hawaiian or Other Pacific Islander White Other	5 (83%) 0 (0%) 0 (0%) 1 (17%)	6 (86%) 0 (0%) 1 (14%) 0 (0%)	6 (86%) 1 (14%) 0 (0%) 0 (0%)	7 (100%) 0 (0%) 0 (0%) 0 (0%)	24 (89%) 1 (4%) 1 (4%) 1 (4%)
BMI (kg/m²), median (range)	29.3 (27.3 – 31.7)	24.6 (20.2 – 32)	27.4 (22.9 – 31.6)	23 (19.7-27.7)	26.7 (19.7 – 32)
Baseline HBsAg Levels (IU/mL), median (range)	222 (29-319)	273 (16-623)	124.8(17.1-322.2)	226 (9.66-562.6)	177.1 (9.66 - 623*)
Baseline HBsAg Levels, n (%) >500 IU/mL 200 - <u><</u> 500 IU/mL 100 - 199 IU/mL < 100 IU/mL	0 (0%) 4 (67%) 0 (0%) 2 (33%)	1 (14%*) 2 (29%) 2 (29%) 2 (29%)	0 (0%) 1 (14%) 4 (57%) 2 (29%)	1 (14%)* 3 (43%) 1 (14%) 2 (29%)	2 (7%*) 10 (37%) 7(26%) 8 (30%)
Baseline ALT (x ULN), n (%) < 1 x ULN 1 to 1.5 x ULN 1.6 x ≤ 2 x ULN	5 (83%) 0 (00%) 1 (17%)	7 (100%) 0 (0%) 0 (0%)	6 (86%) 1 (14%) 0 (0%)	6 (86%) 1 (14%) 0 (0%)	24 (89%) 2 (7%) 1 (4%)
HBeAg Status at Baseline, n (%) Negative Positive	6 (100%) 0 (0%)	6 (80%) 1 (20%)	7 (100%) 0 (0%)	7 (100%) 0 (0%)	26 (96%) 1 (4%)


* As per protocol, participant had prior HBsAg <500 IU/mL at screening

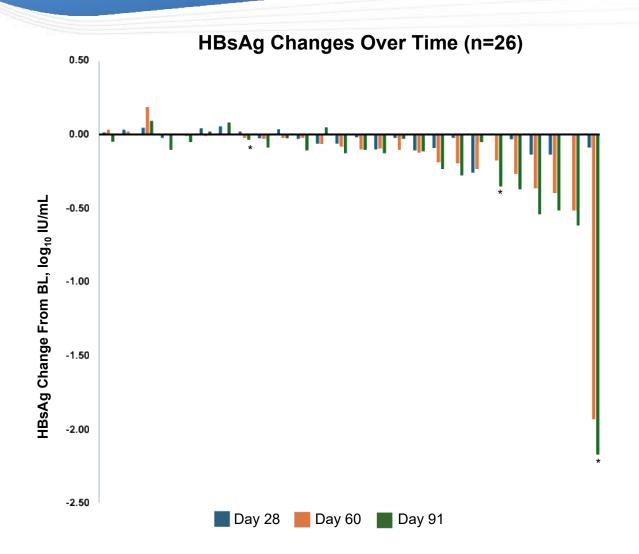
Safety and Tolerability


	Cohort 1a (n=6)	Cohort 1b (n=7)	Cohort 2a (n=7)	Cohort 2b (n=7)	Overall (N=27)
Any AE, n Grade 1 Grade 2 Grade 3 or 4	6 5 1 0	9 7 2 0	13 9 4 0	10 6 4 0	38 27 12 0
SAE, n	0	0	0	0	0
TEAEs, n	2	3	10	5	20
AE Leading to Study Drug Discontinuation, n	0	0	0	0	0
Study Discontinuations, n	0	0	0	0	0
ALT elevations, n Grade 1 Grade 2	0 0	0	0	0	0

Of 7,680 Patient Safety Days: 38 AEs were reported in 17 patients; 20 TEAEs included 3 – Grade 2: eczema, myalgia, and runny nose, and 17 – Grade 1 events. All TEAE symptoms have resolved.

VRON-0200 Significantly Improved HBV IFNγ ELISpot Responses Post Prime Vaccination

Overall (N=24)[^]

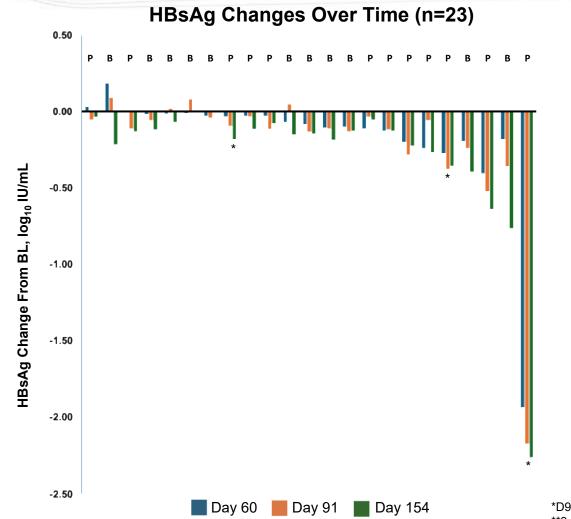


D28 Responders are defined as having ELISpot measurement above the LOD with 2 consecutive timepoint measurements greater than the average of the two pre-treatment timepoints

■ Core ■ Pol N & C

*One-sided paired t-test; ^D91 unavailable for 2 patients - replaced with D104

A Single VRON-0200 Prime Dose Lowers HBsAg Levels Despite NOT Targeting Surface Antigen


Cohorts 1 & 2 Single Prime Dose Day 1

6/26 (23%) had HBsAg \geq 0.4 log₁₀ IU/mL declines at Day 91

-2.2 log₁₀ lU/mL -0.6 log₁₀ lU/mL -0.5 log₁₀ lU/mL -0.5 log₁₀ lU/mL -0.4 log₁₀ lU/mL -0.4 log₁₀ lU/mL

12

VRON-0200 HBsAg Declines Deepen Over Time

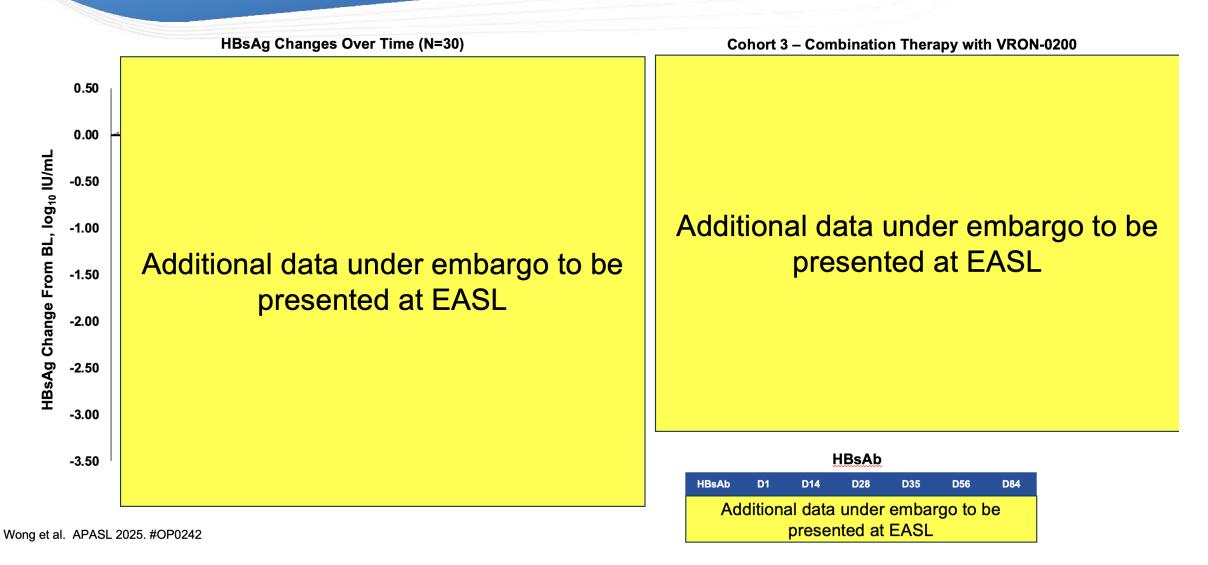
Cohorts 1 & 2 Single Prime & Prime/Boost (D91)

6/24 (25%) had HBsAg \geq 0.4 log₁₀ IU/mL declines at Day 118 and beyond**

-2.3 log₁₀ lU/mL -0.8 log₁₀ lU/mL -0.6 log₁₀ lU/mL -0.5 log₁₀ lU/mL -0.4 log₁₀ lU/mL -0.4 log₁₀ lU/mL

VRON-0200 Does NOT Target Surface Antigen

*D91 Sample missing; D104 sample used; P – Prime Only, B – Prime & Boost (D91) **3 patients at D91 have not reached D154; 2 have continued to trend downward at D118, with 1 patient -0.5 log₁₀ IU/mL decline; 1 patient has not reached D118 but had -0.6 log₁₀ IU/mL decline at D91


Conclusions

This is the first clinical report of VRON-0200 monotherapy Prime, and Prime and Boost:

- With 7,680 patient safety days reported (N=27), VRON-0200 was safe and well-tolerated
 - No differences have been observed between low- and high-doses, and Prime, and Prime and Boost regimens
- S-antigen declines were observed in ~25% of patients despite the fact VRON-0200 does NOT target S
 - In patients with HBsAg declines, it continued over time, regardless of baseline S antigen levels or a boost dose at Day 91
- All Cohorts, including the combination Cohort, are now fully enrolled and ongoing
 - Factors associated with immunologic responses and HBsAg declines are being evaluated further
 - Future data to be presented in 2025

These data support the continued study of VRON-0200 as a safe and well tolerated, easy-toadminister, potential IFN-sparing immunotherapy, alone or in combination, for HBV functional cure

VRON-0200 Cohort 3: Embargoed Data To Be Presented at EASL

Acknowledgements

We wish to thank all the study patients and their families, the study investigators, study coordinators, and study teams, including:

<u>NZ:</u>	Hong Kong SAR, China:	<u>PPD/ BioALabs</u>	ProTrials/Novotech	Virion Therapeutics
Auckland City Hospital	<u>The Chinese University of Hong Kong /</u> Prince of Wales Hospital			
Ed Gane	Grace Wong	Olivia Briskin	Brock Boyce	Tony Baca
William Abbott	Angel Chim	Jason Duncan	Paul Donnelly	Janice Bennett
Manish Patel	Sally Shu / Julie Leung	Mark Zavorin	Sazlyna Mohd Sazlly Lim	Larissa Haut
Ghada Sarah	Pete Tse / Kat Kwan		Sabiqah Muhammad	Paula MacDonald
	Christy Fong / Jackie Fung		Marta Urbanek	
Middlemore Hospital	Jennifer Ng / Cheryl Leung		Jody Wu	

Tien huey Lim

Emma Dorsey

This study is funded by Virion Therapeutics, LLC